

The Taxonomy of HPC Sustainability

Dr Paul Calleja : Director Research Computing Service

JAUA

Cambridge RCS – Key characteristics

- Running for last 18 years, major UK National HPC provider, one of the largest sites in UK in terms of HPC performance and users
- Providing 48% of UK Top500 performance over last 7 year
- Multiple National AI/HPC stakeholders via a pool investment shared infrastructure, rolling upgrade infrastructure, large economies of scale, agility, flexibility
- STFC DiRAC, STFC IRIS, EPSRC Tier 2, STFC SKA, UKAEA
- Currently providing the UK fastest AI supercomputer "DAWN" Along side Bristol kick Starting the DSIT / UKRI AIRR service
- Strong focus on technology transfer across Africa

Dirac

UK Atomic Energy Authority

Cambridge RCS – Key characteristics

- Serving a cross domain HPC user community of over 3500 users
- Bringing together users from Physical Sciences, Biology, Medicine and Engineering on a single heterogeneous system, strong multi-domain RSE and user support team
- Back in 2006 pioneered large scale commodity / open standards based HPC systems as UK national scale HPC systems, when all large national HPC systems at that time were legacy proprietary systems with 100X lower performance per pound.
- <u>Today driving software defined, cloud computing middleware</u>, <u>supporting dev-op HPC environment</u>, <u>with agile dynamic software defined research platforms on top of a shared heterogeneous</u> <u>infrastructure</u>

This is very different to traditional monolithic HPC provision models

Cambridge RCS – Key characteristics

- <u>Strong in-house technology team</u>
 - Undertaking system design, implementation and system/user support function
 - Provides best :- fit between science need and technology deployed, strong VFM, agility, lower risk
- <u>Focus on technology innovation via industry partnership & co-design</u> Open ZettaScale Lab long term co-design partnership with Dell, and wider technology supply chain partners
- Our technology development is strongly directed by science need
- Strong partnerships and some commercialisation
 - Long term partners
 - Dell, Intel, StackHPC, Mellanox, Cornelis networks, SchedMD
 - Spin outs
 - Zetta Genomics, Cambridge Research Computing Ltd

Cambridge RCS Facts & figures

- Provide both national & Local HPC, AI and Data services (90/10)
- Undertake growing volume of HPC / AI development activities
- £100M of HPC equipment in operation
- Currently ~40 staff rising to 55 over next year. Highly capable HPC design, implementation and operations teams.
- 1.8 MW water cooled HPC Data center 100 Racks
- 30 PF heterogeneous converged HPC/AI system
- 3000 Dell servers X86/GPU Intel & NVIDIA
- 45 PB storage (disk/tape)

- \$10M 4-year program Academic / industrial partnership for the co-design, development and testing of leading-edge HPC, AI and HPDA solutions
- Pushing the boundaries of performance and functionality but more importantly making large scale HPC system more accessible thereby democratising HPC/AI and HPDA technologies for everyone at every-scale

The co-design virtuous circle

- Fusion of science use-case, service provider and technology vendor input
- Critical mass of experience, skills and infrastructure
- Strong science led technology development
- Driving the innovation cycle requirements, develop, deploy, evaluate, iterate

ZettaScale Lab technology development themes

- Energy efficiency
- oneAPI Centre of Excellence
- Research Computing middleware, accessibility & tools
- Large scale tiered storage solutions
- Al workflows and tools merging Al cloud into HPC infratsructre
- HPC networking technologies
- Extreme scale visualisation
- Health informatics (TRE's) HPC in the clinic

Traditional HPC Stack

Bletchley September 2024

OpenStack for Research Computing

Use Openstack to provide shared heterogeneous infrastructure Use Ansible to biuld software defined, reconfigurable science platform ontop of that shared Infrastruture

Scientific OpenStack – On Premise Science Cloud

Full-Stack Science platforms

	Science Workflows			
DevOps Toolkit	Science Platforms			
	ΑΑΑΙ	Storage Infra	Compute Infa	External
	Baremetal and Network			Clouds

- Deliver HPC & AI via cloud APIs
- Under strong active development in partnership with StackHPC funding UKRI, SKA, Industry
- Creating UK "Community Cloud Middleware Stack" UKRI project
- Revolutionises flexibility and end user functionality of HPC systems
- Makes hybrid HPC systems real
- Controlling all Cambridge
 infrastructure

.

- UK's Fastest AI supercomputer 19.45 PF, #40Top500 at launch (11/2023) #50 now
- Highly innovative co-design, co-investment partnership - Dell, Intel, Cambridge, UKAEA, UKRI, DSIT, StackHPC
- Kick staring UK's National AI Service (AIRR) making the largest AI systems easily usable by scientists, government and business
- Creating federation demonstrator across AIRR Cambridge Bristol, UCL, Durham StackHPC using Waldur access portal, which is used across Euro HPC sites.

- 256 Dell XE9640 2U DLC cooled GPU servers
- Each with :-
 - 2 * 4th Gen Intel Xeons
 - 4 way SMP Intel Data Centre Max GPU
 - 1TB RAM, 4NVMe, 4 * HDR200 (fully non blocking)
- 1024 Data Centre Max GPU 19.45 PF HPL
- 3000 port fiber core, 200TBs maximum throughput, 20Km cabling
- Large spinning disk Luster + additional 3PB NVMe storage with over 3000 GB/s R/W bandwidths

- Consumes 1 MW of power
- DLC water cooling
- 240 L/s of flow !!
- 8 weeks P/O to delivery 3 weeks delivery to top500 !!!
- Already up and in early science mode

Energy Sustainability

- Cooling
 - Air to crack traditional
 - Air to water water back doors
 - Water to water DLC
- Compute device
 - CPU
 - GPU
 - Latest generation
- Operational efficiency
 - Frequency scaling
 - Code optimization / less mpi wait less I/O wait
- Heat reuse
- Green energy input

Energy Sustainability

- Cooling
 - Air to crack + DX traditional air con
 - Air to water back doors + Adiabatic
 - Water to water DLC
- Compute device
 - CPU
 - GPU
 volume
 - Latest generation
- Operational efficiency
 - Frequency scaling 20%
 - Code optimization / less mpi wait less I/O wait 20%
- Heat reuse
- Green energy input

40% 20%

300% but only good for 50% of workloads by

30%

50%

330% !!!

That would save me £1.5M a year or 3X performance out of same DC !!

